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Rotating barotropic flow over finite isolated topography 

By PETER R. BANNONT 
National Center for Atmospheric Research, $ Boulder, Colorado 80307 

(Received 17 August 1979 and in revised form 20 December 1979) 

The flow of a rotating, incompressible fluid over isolated topography whose non- 
dimensional height (i.e. topographic height divided by the mean fluid depth) is large 
compared with the Rossby number is studied. Attention is restricted to flow which is 
sufficiently shallow that the free-surface equations provide an adequate description. 
The flow is forced laterally by a specified upstream inflow (obtained from solutions of 
the zonally symmetric model equations) and by a prescribed surface stress. Dissipation 
is incorporated using a Rayleigh friction acting anti-parallel to the flow. 

Steady-state solutions for uniform inflow on an f-plane are found for (a )  linear 
viscous flow, ( b )  quasi-geostrophic flow with and without friction and ( c )  inviscid flow 
with and without arigid lid. The presence of friction produces an upstream-downstream 
flow asymmetry over the obstacle and an associated topographic drag while inertial 
terms produce left-right (relative to an observer looking downstream) asymmetry. 
The blocking efficiency B (the percentage of the incident mass flux going around the 
obstacle rather than over it) of B Gaussian obstacle is largest ( -  100%) for case (a) 
when viscous effects are small. In contrast quasi-geostrophic theory calculates no flow 
blocking ( B  = 0). For inviscid inertial theory, B - 10% and is independent of the 
Rossby number. The presence of a free surface decreases the blocking for small- 
Rossby-number flow. 

Numerical solutions of the appropriate initial, boundary-value problem for the 
complete model equations confirm these results and extend them to include the effects 
of (i) horizontal shear in the upstream inflow, (ii) the magnitude and shape of the 
topography, and (iii) variations in the Coriolis parameter @effect). 

1. Introduction 
Hide (1961) advanced the hypothesis that the Great Red Spot of Jupiter is the 

result of topographic blocking of a flow in a rapidly rotating fluid. Hide argued that 
dynamical constraints on the flow, as first deduced theoretically by Proudman (1916) 
and Taylor (1921), and demonstrated in the laboratory by Taylor (1923)) will lead to 
the formation of a stagnant body of fluid above an (assumed) Jovian obstacle with two- 
dimensional flow around the obstacle. Hide named this phenomenon a Taylor column. 

Though Hide’s original hypothesis is subject to scientific debate (see, for example, 
Stone & Baker 1968, and Hide 1971)) evidence for the existence of Taylor columns has 
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been presented for other geophysical fluid flows. Most notable have been contributions 
in oceanography. Hogg (19733), Roberts et al. (1974), and Huppert & Bryan (1976) 
have interpreted observations over seamounts as being consistent with the presence 
of Taylor columns. In  contrast no Taylor columns have been documented in the earth’s 
atmosphere. However, the Taylor column mechanism has been invoked as an aid in 
understanding the airflow over the Alps (Buzzi & Tibaldi 1977) and over the Tibetan 
plateau (Nakamura 1978). The fundamental importance of the Taylor column lies in 
the fact that it is the premier example of the deflexion by rotational effects of flow 
around rather than over a topographic feature. 

The first theoretical study of a Taylor column was that of Jacobs (1964) who 
presented a steady, linear, viscous analysis. In  such a model, vertical velocities 
associated with flow over the obstacle are counteracted by Ekman pumping in the 
boundary layer to produce a stagnant region when the non-dimensional slope is 
O( 1). However, the theory, which predicts upstream-downstream and left-rightt 
symmetry for symmetric obstacles, is not in agreement with laboratory simulations 
(Hide & Ibbetson 1966). 

In  an attempt to remove this deficiency, Ingersoll (1969) formulated an inviscid 
model using steady quasi-geostrophic theory. Such an approach is well-posed provided 
the flow possesses no closed streamlines. Ingersoll gave a heuristic argument based on 
vanishingly small viscosity to obtain the boundary condition of zero tangential 
velocity on closed streamlines. The theory predicts the formation of a Taylor column 
to the right of the obstacle, in agreement with laboratory simulations. However, the 
specification of both the stream function and its normal derivative about the column is 
an overspecification of the appropriate elliptic equation. 

Since then quasi-geostrophic theory has been extended to include the effects of 
horizontal shear (Cottrell 1970), friction (Vaziri & Boyer 1971), stratification (Hogg 
1973a), and variable Coriolis parameter (McCartney 1975). The problem of closed 
streamlines was still not solved, however. Another shortcoming of the quasi-geo- 
strophic approach is that the theory is limited to  consideration of topography whose 
non-dimensional height (i.e. topographic height divided by the mean fluid depth) is of 
the order of the Rossby number. Huppert (1975) has shown that closed streamlines 
(i.e. Taylw columns) form only for topography which is several times the Rossby 
number. This result is valid in the limit of vanishing Rossby number (and hence 
topography). 

Johnson (19784  considered the inviscid, time-dependent problem and obtained a 
variational principle to describe steady motions at finite Rossby number over obstacles 
of finite height. He extended Huppert’s (1975) criterion for the formation of a Taylor 
column and showed it to be an underestimate for finite Rossby number. In  addition he 
found that for certain flow initiations, a Taylor column will exist over the obstacle as 
well as a smaller, more intense vortex of opposite sign to the right. Solutions for this 
vortex pair, however, were presented only in the quasi-geostrophic limit. 

The purpose of the present study is to investigate the effect on the fluid flow of 
obstacles whose non-dimensional height is large compared with the Rossby number. 
Such an investigation extends quasi-geostrophic results beyond the point where closed 

t In this paper left and right are with respect to an observer looking downstream (upstream) 
for counterclockwise (clockwise) rotation. 



Rotating barotropic $ow over Jinite isolated topography 283 

n -> =ex 

+ -.L- 

> / / / / / /  

FIGURE 1. Schematic illustration of the model geometry depicting a cross-section along 
the z axis. Peak of the Gaussian obstacle lies a t  the origin. 

streamlines form. In  addition the effects of finite Rossby number, viscosity, horizontal 
shear of the inflow, variation of the Coriolis parameter with latitude, and presence of a 
free surface are ascertained. Emphasis is placed on determining how much flow goes 
around rather than over a single isolated topographic feature. 

The model consists of the barotropic free surface equations on anf or P-plane. The 
flow is forced laterally by a specified upstream inflow (obtained from solutions of the 
zonally symmetric equations) and by a distribution of surface stress. This inviscid set 
of equations with no forcing has been integrated numerically by Kasahara (1966), 
Vergeiner & Ogura (1972), and Edelmann (1972) over a channel domain with rigid, 
left-right and periodic, upstream-downstream boundaries. Such an approach does not 
enable the horizontal structure of the flow incident on the obstacle to be adequately 
controlled by the experimenter. Moreover, no author was able to achieve a steady state. 
Here dissipation is incorporated using a Rayleigh friction acting anti-parallel to the 
flow. The modified set is integrated to a steady state over a rectangular domain with 
open boundaries on all four sides. 

In  the next section, the model assumptions are delineated, the basic equations 
presented, and the numerical model used in solving the initial, boundary-value 
problem is described. Section 3 presents exact steady-state solutions of the model 
equations for linear, viscous flow. In  $ 4 quasi-geostrophic results are reviewed for flow 
with and without friction. Section 5 extends quasi-geostrophic theory to finite Rossby 
number with steady-state solutions for inviscid flow with and without a rigid lid. 
Section 6 presents the results of numerical integrations of the initial, boundary-value 
problem for a variety of flow parameters. The paper concludes with a section sum- 
marizing the results. 

It should be noted that not all the results presented here are new (e.g. $53 and 4). 
Their inclusion, however, will facilitate comparison with the numerical results of $6 
and provide a comprehensive survey of rotating barotropic flow over topography. 

2. Themodel 
2.1. Basic equations 

We consider the flow of a rotating incompressible fluid over a single topographic 
feature located at  the origin of a Cartesian co-ordinate system (x, y, 2 ) .  Figure 1 
summarizes the model geometry. The obstacle’s height h = h(x,y) has a maximum 
value h, and falls to Bh, in a horizontal distance L. The obstacle is isolated in that h+ 0 
as r = (x2+y2)*+m. The fluid has a free surface of height H .  A gravitational force 
- g2 acts to restore that surface to its unperturbed height H,. The rotation vector is 
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Symbol Definition Name 

6 UO/fL Rossby number 
Y KIfHi Ekman number 
Y R  R l f H o  Rayleigh-Ekman number 
6 HO/L aspect ratio 
f i  W H O  topographic parameter 

P P I  ur3 beta parameter 
f "a/gHo rotational Froude number 

TABLE 1. Non-dimensional flow parameters. 

QL = *(f+Py)S. The fluid has density p and (constant) kinematic viscosity K.  Far 
upstream (x = - 00) a flow of characteristic speed U ,  i g  incident on the obstacle. The 
fluid is driven by a mass flux in the y direction or by an externally applied surface 
stress T ~ ~ .  The fluid velocity relative to the rotating frame is (u, v, w), P denotes the 
sum of the fluid pressure and the potential of the conservative body forces, and t time. 

It is convenient to introduce the following non-dimensional quantities denoted by 
asterisks. 

I w=uHow* 
OL ' 

v = U0(u*, w*), 

(%Y) = L(X*,Y*), z = H0z*, 
L t = -  uo t * ,  

h = hob*, 

P = pgHo-pgz+pUo fLp*, 

H = H0(1+s*) ,  
T,, = PRUOT". 

Though the time-dependent equations (see below) are solved, attention is confined to 
steady-state solutions. Thus use of the advective time scale L/U,  is appropriate. In the 
scaling of the surface stress T ~ ~ ,  a constant Rayleigh friction speed R has been 
introduced. 

The non-dimensional Navier-Stokes equations are, dropping the asterisks, 

au av aw -+-+- = 0, 
ax ay ax 

(2 .2a)  

(2.2b) 

(2.2c) 

(2 .2a)  

where 
g a  a - -+v.v+w- 3i = at ax 

a2 

a22 
A -++V2, 
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and V is the horizontal component of the gradient operator. Non-dimensional 
parameters are denoted by lower case Greek letters and defined in table 1.  

The vertical boundary conditions are: 
(i) kinematic condition at the free surface, 

w(z= l+s) = -+v .v  s; 
(:t 1 ( 2 . 3 ~ )  

(ii) the lower boundary is impermeable, 

W ( Z  = pb)  = V. V(pb) ;  (2 .3b)  

(iii) the preswre is continuous a t  the free surface (effects of surface tension are 

( 2 . 3 ~ )  
assumed negligible), 

P(z = 1 +s) = 0;  

(iv) the surface stress is continuous a t  x = 1 + s, 

( 2 . 3 d )  

(2 .3e)  

where is a unit vector normal to the bottom surface. 
In this study, the range of the parameters in table 1 is assumed to be 

(4Y) Q 1, ( 2 . 4 ~ )  b )  

( 6 , p A p )  5 1, ( 2 . 4 ~ )  

and yR is discussed below. Geometrically the fluid is taken to be shallow: L H,. 
This feature is characteristic of many large-scale geophysical flows. It provides 
constraint ( 2 . 4 a )  that the aspect ratio is small. The constraint (2 .4b )  that the Ekman 
number is small restricts viscous effects to thin boundary layers. The topography is 
allowed to be a significant fraction of the mean fluid depth: h, S H,. In  contrast to 
(2 .4) ,  quasi-geostrophic theory assumes 

(p, y$ S 8 < 1, (2 .5a ,  b )  

(W,/Q 5 1, ( 2 . 5 ~ )  

so that the fluid may be thick but is rapidly rotating while the topography is weak. 
As d2+ 0, (2 .2 )  indicates that the flow becomes hydrostatic ( a p l a z  = 0 )  and laterally 

inviscid. Pressure continuity ( 2 . 3 ~ )  is then satisfied provided 

s = k p .  (2 .6 )  

The result that the horizontal pressure gradients are independent of z suggests that the 
vertical shear is small. An estimate of the magnitude of the vertical shear may be 
obtained using, for example, the equation describing the y component of vorticity. It 
may be formed from (2 .2 )  in the usual manner. The result is 
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As (e, y )  + 0, aw/az+ 0 and there is no vertical shear. This limiting case is the Taylor- 
Proudman theorem valid for finite aspect ratio &. Initial generation of vertical shear 
will be governed by the last two terms of (2.7): the tipping of the vertical component 
of relative vorticity into the horizontal plane and the shear zones associated with the 
conditions (iv) and (v). Here y < 1 and the vertical shear generated by the latter 
mechanism is negligible except in thin boundary layers whose thickness is O( y*) < 1. 
It is important to note that within such layers the shear is locally large and O(y-*). 
The boundary condition (2.3b) indicates w N O(,u). Use of this estimate in the last two 
terms in (2.7) indicates that the topographically induced shear is O(e,u.t2, ?,us2) + O(d4). 
[The boundary condition ( 2 . 3 ~ )  with (2.6) yields a similar result with p replaced by 
he.] Thus the magnitude of the vertical variation of the horizontal velocity over an 
O( 1) depth of fluid is 

by (2.4) taking a2 < y* < 1. 
This result suggests we study the depth-averaged flow components. Formally we 

separate the velocity into barotropic (x-independent) and baroclinic (2-dependent) 
components. For example 

max(Y*, wp, Y P V  = 74, (2.8) 

u(x, Y, z , t )  = w, Y, t )  + u’(x, Y, 2, t ) ,  (2.9) 

where the overbar denotes a depth average from z = pb to z = 1 + hep. Note that 
u‘ = 0, uu’ = 0, etc. Equations for the barotropic flow components are obtained by 
depth averaging (2.2) with a2 = 0. The result is 

- 

aD av, - - + D - -  , 
dt a ~ j  (2. l o b )  

where i(j) = 1,2,  D = 1 + hep -,ub is the fluid depth and 

The suffix notation for vector components has been introduced and the summation 
convention is assumed. In  deriving (2. lo), boundary conditions (2.3a, b)  have been 
used. 

The second term on the right-hand side of (2.10a) represents the horizontal di- 
vergence of the vertically integrated correlation of the x-dependent flow components. 
Its magnitude is O( 5 y )  < 1 by (2.8) and the term is dropped. The last term in (2.10a) 
denotes the net contribution of surface and bottom stresses and is not necessarily 
small. The surface stress is given by (2.3d). In  principle the bottom stress may be 
found by solving the equations for the baroclinic flow [(2.2) with a2 = 0 minus (2.iO)l 
subject to conditions (2.3d,e). Such an approach is non-trivial, however, and is not 
pursued here. Rather the simplest closure assumption is made: that of a linear Rayleigh 
drag law acting anti-parallel to the velocity. Thus 

(2.11) 
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where yR, defined in table 1 in terms of a constant coefficient of Rayleigh friction R, 
is o(y$. 

With these simplifications, (2.10) becomes, dropping the overbar, 

dV 
E - + ( l + / ! J € y ) ( 2 x v )  at = -vp-%(v-T) ,  

dD 
at 
-+-D(V.v) = 0. 

( 2 . 1 2 ~ )  

(2.12 b)  

Equations (2 .12)  form a closed system of three equations for u, v and D with the 
specification of the external stress T and the obstacle shape b. The external stress is 
discussed below. Here 

(2.13) 

where a = In 2 .  Unless otherwise stated, crz = crv = 1, and the topography is circularly 
symmetric with Gaussian slopes. It falls to half its maximum value in one non- 
dimensional horizontal distance. A Gaussian obstacle has the advantage that it and 
its derivatives are continuous. Discontinuous topographies, such as disks, have large 
slopes, ,US % 1 ,  and would presumably excite horizontal shear layers (Stewartson 1957) 
and generate significant tipping of vorticity. In  such cases €pa2 and ypP in (2 .8 )  would 
be large and the derivation of (2 .12)  would be invalidated. Attention is therefore 
restricted to obstacles of the form (2 .13 ) .  

The basic set (2 .12)  is solved in the subsequent sections using various approxi- 
mations and techniques. The steady (a /at  = 0) form of (2 .12)  leads to two-dimensional 
elliptic equations which are solved analytically or numerically. This approach is taken 
in $53-5 where the appropriate Dirichlet boundary conditions are given. In  $ 6  the 
initial boundary value problem is solved numerically. The time-dependent version of 
(2.12) is comprised of three hyperbolic equations. For the subcritical (ha2 < 1)  flows 
of interest here, two pieces of information are required on inflow and one on outflow 
boundaries. This information is obtained from solutions of the steady, x-independent 
model equations (discussed below). The details of the numerical solution and the 
initial conditions are provided in the next subsection. 

Common to each approach (either steady or time-dependent) is the assumption of 
no upstream-downstream influence of the obstacle. It is assumed that a steady, 
x-independent solution holds far upstream (z+ - co) or downstream (x+ + co) of the 
topography. The alteration of the flow due to the topography is then determined. 
Rigorous proof of ‘Long’s hypothesis’ in the present case is not currently available. 
When friction is present, any disturbance excited by the obstacle will be dissipated by 
the time it reaches infinity and no upstream-downstream influence is possible (see, 
for example, McIntyre 1972). In  cases without friction (594-5),  the free modes of the 
linear system are evanescent for zero frequency. Therefore no steady-state information 
can propagate upstream or downstream. 

The flow a t  infinity is described by 

( 2 . 1 4 ~ )  
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dv dp yRv ev-+(l+/%y)u = ---- 
dY dy D ’ (2.14b) 

( 2 . 1 4 ~ )  

where X is the applied zonal surface stress and Y ,  the meridional stress, is taken to be 
zero. A constant meridional mass flux is assumed of order yR: vD = yR. For a given 
u( y), the required external stress is found from (2.14a) to be 

d u  x= u$€--(l+/!?€y). 
dY 

(2.15) 

For example, for u = 1 and ,!? = 0, X = 0. Since D N 1, v N yR < 1, and the inflow is 
predominately zonal. 

2.2. Numerical model 
Numerical solutions of the time-dependent set (2.12) are obtained over a 40 x 40 
square domain using a grid of 60 x 60 points (1  20 x 120 points for cases involving non- 
uniform inflow and 100 x 100points over a 80 x 80 domain for the case yR = 1.0 x 
The grid is oriented a t  a 45’ angle relative to the zonal velocity to produce a diamond. 
This procedure enables upetream and downstream boundaries to be unambiguous and 
assures that velocity components normal to the boundary are O( 1) everywhere. The 
obstacle is placed at the centre of the domain (0,O) and is a t  least 20 non-dimensional 
units from the boundaries. The large domain ensures that perturbations excited by the 
obstacle will be negligibly small upon arrival a t  the boundary. (A typical decay 
distance, e/yR, is ,< 5 units.) The Cartesian grid is stretched in both the x’ and y’ 
directions so that Ax’(Ay’) = 0.2, 0.2, 1.2, 3.0 at x‘(y’) = 0, 3, _+ 10, 20, respect- 
ively. (The primes refer to the rotated co-ordinates.) The gridpoints are staggered in 
space following Williams (1 969) to produce an effective grid resolution of 0.1 near the 
obstacle. 

Second-order differencing is used to express the pressure-gradient and mass-flux 
terms. The nonlinear advective terms are represented using the quadratic conservative 
scheme of Piacsek & Williams (1970); the Coriolis terms using the approach of Arakawa 
& Lamb (1977). A leapfrog time step is employed with the friction terms evaluated at 
the 7 - 1 time level. In order to prevent the temporal separation of solutions, the 7 - 1, 
7,  and 7 + 1 time levels are averaged together every 23 time steps with weights of 0.25, 
0.50, and 0.25, respectively, and the integration restarted. The start-up procedure 
consists of a forward time step followed by a leapfrog step, each with half the usual 
time interval (Miyakoda 1973). The time step is taken to be At = 0.05(hs2)-*. 

All four sides of the domain are treated as open boundaries. On inflow, the hori- 
zontal velocity is specified; on outflow, the normal velocity component. In  addition to 
these physical conditions, computational boundary conditions are provided by linear 
extrapolation. In  order to minimize the spurious reflexion of transients a t  the 
boundaries, the approach of Orlanski (1976) is adopted in modified form (Bannon 1979). 

The initial free-surface height field is that obtained from the solution of the zonally 
symmetric model equations, (2.14). The solution is found using a fourth-order Runge- 
Kutta technique. It also provides the Dirichlet boundary conditions. The velocity 
field is then determined by satisfying the balance condition of mass flux continuity 
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over the variable bottom topography. This procedure results in the largest velocities 
being located over the obstacle (for p > 0) .  This initialization and the presence of 
viscosity preclude the formation of a vortex pair as discussed by Johnson ( 1 9 7 8 ~ ) .  

For each experiment discussed in Q 6, the equations were integrated forward in time 
for 8 frictional spindown times (7, = s/yR) by which time a steady state had been 
achieved. The results displayed here are based on the fields calculated at the end of the 
integration. The numerical technique was verified by reproducing the steady-state 
calculations of Q 3 for the case e = 0 and of Q 4 for the Oseen approximation to quasi- 
geostrophic theory for p = 1.3056 and yR = 0.26. 

In the course of some of the numerical integrations, a weak two-delta grid oscillation 
develops in the velocity components where the fields are small. This oscillation has zero 
phase speed and represents a spurious spatial mode excited by the finite-difference 
scheme for the advective accelerations. It is believed that this computational noise 
does not seriously affect the solutions because (1) the effect of the oscillation is auto- 
maticallyremoved from many of the terms in the equations by the averaging associated 
with the differencing scheme, ( 2 )  the height field H is smooth, (3) the computation is 
stable, and (4) tests with a lateral viscosity with y = 0.04 yR produced results similar 
to the laterally inviscid calculation but without the oscillation. The numerical results 
presented in 5 6 are based on the unemoothed fields computed with no lateral viscosity. 

3. Steady linear solution with friction 
In order to ascertain the effects of the nonlinear inertial terms, solutions of the 

linearized model equations are now presented which may be compared with the 
subsequent nonlinear calculations. In  the limit of E+O with ,8 - O(1) and h - O(l),  
(2.12a, b )  become, with no external stress, 

(3.1a) 

(3 . lb)  

( 3 . 1 ~ )  

It is noted that the presence of the free surface has no effect. Solving (3.1 u) and (3.1 b )  
for u and v in t a m s  ofp and substituting into (3.1 c) yields an elliptic equat,ion for p :  

where 

1 e 
2 - - J ( p , e ) + - J ( p , c ) -  

v p - Y R  Y R  

e = ( I  -,ub), c = In [e2/(y& + e 2 ) ] ,  

and J ( S ,  T) = - S,T, -I- S,T, is the Jacobian operator. 

v = vo = constant, the solution is 
Far upstream of the obstacle a t  (0 ,  0) ,  the flow satisfies (2.14) with c = 0. Letting 

urn = VOIYIP vm = vo7 P m  = Po, - YR"0Y - VUY/YI t>  (3.3a, b , c )  
I 0  P1.M I 0 1  
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FIGURE 2. Velocity vector field and pressure contours for linear viscous flow with p = 0.522 and 
Y R  = 2 x (3.1. = 0.4. MV = 1.52. In  this and all subsequent figures, the dashed circle of 
unit radius is the contour of the bottom topography a t  half its maximum-value p ;  (2.1. is the 
contour interval of the non-dimensional pressure field; MV denotes the speed of the largest 
velocity vector; the heavy contour line refers to  the pressure field at (z = -a, y = 0). 

where p,, is an arbitrary constant. The subscript 00 denotes the x-independent flow 
solution far from the obstacle. With vo = yn, u, = 1.  

Numerical solutions of (3.2) are found on a 20 x 20 square domain using a fourth- 
order finite-difference scheme with a uniform mesh A = 0.2. On all four boundaries 
p = p, .  Because the spectral radius of convergence of the appropriate iteration matrix 
(see, for example, Smith 1975) is greater than unity, iterative methods (e.g. successive 
over-relaxation) could not be utilized. Here the solution is obtained by direct inversion 
of the matrix equation. 

Figure 2 displays the result obtained for the case of uniform inflow (u, = 1, v, = yR) 
for yR = 2.0 x 1 0 P  with p = 0.522. (The particular choice of ,u used here will be made 
apparent in the next section.) The upstream flow is deflected around the obstacle with 
a stagnant region (Taylor column) over the obstacle. For larger yR (not shown), the 
deffexion of the incident flow is less. The essence of the physics is contained in the 
first two terms in (3.2) 

V% - (P/YR) J(P, b ) ,  (3.4) 

which states that the frictional dissipation of vorticity due to Ekman pumping (left- 
hand side) is balanced by orographic vortex stretching (right-hand side). A viscous 
Taylor column ( J ( p ,  b )  N 0) will form provided ,u B yR. 

This result is in agreement with the analysis of Jacobs (1964) who solved the steady, 
three-dimensional linear problem. Jacobs’s analysis predicts that the flow about the 
obstacle reduces to that of two-dimensional potential theory in the limit y-+ 0. Such 
a flow possesses upstream-downstream and left-right symmetry. The deviations from 
this solution displayed in figure 2 are presumably caused by yR being finite. The 
topographic enhancement of the friction [yR/( 1 -pb) us. yR in (3.1 a)  and (3.1 b ) ]  is not 
responsible for the deviations. 
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YR B(1) B(2)  B(3 )  8 E  6, (& + 624 
2.0 x 10-3 1.00 1.03 0.65 0.53 1.03 1.56 
2.0 x 10-2 1 *06 0.75 0.36 0-75 0.56 1.31 
2.0 x 10-1 0.59 0.27 0.12 0.96 0.14 1.10 

TABLE 2. Blocking efficiency and drag coefficients for linear viscous flow 
with p = 0.522; A = 0. 

It is convenient a t  this time to introduce two non-dimensional ratios which measure 
the blocking efficiency of the topography, B( y), and the asymmetry of the flow around 
the obstacle, A ( y). Let 

F+W, y) + F-(O, Y) 
F+(-oo,y)+P-(-co,y)’ 

B ( y )  = 1 -  

where 

(3.5a) 

(3 .5b )  

is the zonal mass flux. For a Taylor column of radius y,., B(y 6 y,) = 1.  Note that 
B(oo) = 0 and that A ( y) = 0 for symmetric flow. For linear viscous flows, A ( y)  = 0. 
The left-right symmetry of the solutions is also reflected in the fact that the contour 
line of the pressure field (streamline) originating a t  (x = - co, y = 0) crosses the y axis 
at y = 0. Table 2 gives the blocking efficiencies for various values of yn with ,u = 0.522. 
A value of B > 1 indicates the presence of a return flow (u c 0) over the obstacle. 

It is also of interest to determine the total drag exerted on the flow due to the 
presence of the obstacle. Define a frictional or Ekman drag and a topographic drag by: 

( 3 . 6 ~ )  

(3.6b) 

respectively. Since ab/ax is odd in x and even in y, CT = 0 if p is even in x or odd in y .  
It is convenient to normalize these drag coefficients by that drag present in the absence 

Table 2 presents the results. The integrals are taken over the domain of figure 2. Note 
the increase (decrease) in eT(eE) with decreasing yR. In each case, however, 

6T.t-E > 1, 

indicating that the total drag is greater than that in the absence of an obstacle. 
1 0 - 2  
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P c, 4 1 )  - 4 2 )  4 3 )  
&PO 0 0-77 1.22 1.21 

+ P O  - *  0.82 1.64 2.22 
+PC +* 0.75 1.16 1.21 

PC 0 2.49 6.31 6.17 
2PC 0 - 20.51 - 5.86 - 5.92 

TABLE 3. Asymmetry function $r inviscid quasi-geostrophic flow. 
B = C ,  = 0. 

4. Quasi-geostrophic theory 
Here inertial effects are introduced using the quasi-geostrophic approximation. 

Assuming (yR,p) 5 E < 1 and (A,,!?) 5 1, the dependent variables may be expressed 
in terms of a perturbation series expansion in E .  For example 

(4.1) 

Substitution of such series into (2.12) and retention of only the O(1) term yields the 
result that the flow is geostrophic and non-divergent. The O(E)  equations may be 
combined in a straightforward manner to yield 

p = p , + E p , + E 2 p z +  ... +snpn+. . .  . 

where 
d a  a a 

dt, at Oax OaY’ 
- = -+u -+v - 

The result (4.2) is consistent with the usual quasi-geostrophic theory (e.g. Johnson 
19783; Stevenson & Janowitz 1977) provided yR = y*. The degeneracy of the zeroth- 
order flow can now be removed through consideration of (i) time dependence, (ii) topo- 
graphic effects, and/or (iii) friction. In  the steady state, (4.2) may be written 

Since J(p,,po) = 0, quasi-geostrophic theory indicates no free surface effects in the 
steady state (Johnson 19783). 

For yR = 0, (4.3) states that the quantity [Vzpo+,ub/~+,8y] is conserved along 
streamlines. Therefore, knowledge of the flow upstream enables the flow to be deter- 
mined everywhere provided no closed streamlines exist. Setting ,!? = 0 and assuming a 
zonal inflow at x = --oo of the form u = u,-cmy, the solution is (Cottrell 1970; 
Huppert 1975) 

(4.4) 
p ( -  l)n(a@)n 

PO = - u m ? l + g 5 m Y 2 + g s n ~ l ~  7 5  

where r2 = x2+y2 and a = In 2. For u, = 1 and c;oO = 0, Huppert (1975) showed that 
the condition for the formation of a closed streamline (Taylor column) over a Gaussian 
mountain is that ,u > pUc = 2.61s. The column grows from the point ( T ,  0) = (1.35, -in). 
[Differences in numerical constants used here and in Huppert (1975) arise from different 
scaling.] 
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FIGURE 

/ /  f ’ ’ ./ 
I . ,  / / / , - .  

, - - ~  - . 
3. Inviscid quasi-geostrophic flow for U, = 1, [, = 0, 

C.I. = 0.4. MV = 1.99. 
andp = p,. 

Table 3 summarizes the results. Figure 3 plots the solution (4.4) with u, = 1 and 
6, = 0 for p = pc. The solutions possess upstream-downstream symmetry but have 
considerable left-right asymmetry. The left-right asymmetry is also reflected in the 
fact that the streamline originating a t  (x = - co, y = 0 )  crosses the y axis a t  y = + 03. 

This feature is a consequence of the fact that the last term in (4.4) represents a mono- 
pole of vorticity with circulation I’ = (yn’/e.a) (e-arz - 1) which is non-zero at  infinity. In 
contrast linear viscous flow (figure 2) exhibits a dipole-type field. The asymmetry 
increases with increasing obstacle height. Upon the formation of a Taylor column to the 
right of the obstacle centre (y > p,) with the associated return flow (u < 0 ) ,  A(y) 
becomes negative. Because of the symmetry of the solutions (4.4)) B(y) E 0, f i E  = 1 
and C, = 0. Thus quasi-geostrophic theory calculates no blocking of the flow. This 
shortcoming is a consequence of the non-divergent character of the flow. The obstacle 
acts only on the rotational flow component through the mechanism of vortex stretching. 
The divergent flow component is unaffected. The lack of a topographic drag is a 
consequence of d’alembert’s paradox: in the absence of wave motion, steady inviscid 
flow can produce no drag. Table 3 also gives A (  y) for u, = 1, p = $yc and [a = 1 $. 
As noted by Cottrell (1970), a background flow with anticyclonic shear provides an 
environment better suited for the formation of Taylor columns by increasing the flow 
asymmetry. 

Frictional effects were taken into account by Vaziri & Boyer (1971) who treated 
(4.2) as an initial, boundary-value problem on an f-plane. Their results show that the 
incorporation of friction destroys the upstream-downstream symmetry present in the 
inviscid results (see figure 3).  The reason for the asymmetry is revealed most easily by 
applying the Oseen approximation to (4.3). This approach has been used previously 
by Huppert & Stern (1974) for ridge-like obstacles on the f-plane and by Stevenson & 
Janowitz (1977) for point sources on the p-plane. With such an approximation, (4.3) 
becomes 
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This elliptic equation with ,!? = 0 was solved numerically on a 20 x 20 domain with 
100 x 100 gridpoints using the technique of successive-over-relaxation with po = - y 
on the boundaries (i.e. uniform inflow u, = + 1) .  The frictional term was treated as a 
small perturbation (yR/e = 0.2) of a known function based on a previous iterative 
solution. Initially V2po = -pub/€. The technique was convergent and the solution for 
p = #pc and yR/e = 0.2 is similar to figure 7 (c) and is not shown. As with the previous 
quasi-geostrophic results, B( y) = 0. Here A( y) = 0.47, 0.68, 0.64 for y = 1 , 2 , 3 ,  and 
the reference streamline exhibits a finite deflexion to the left upon crossing the y axis. 
Thus friction reduces the left-right asymmetry, implying that inertial Taylor columns 
are less likely to form in the presence of friction. The upstream-downstream asym- 
metry produces a topographic drag: fir = 0.13, fiE = 1.00. 

5. Steady inviscid flow 
Here we ascertain the effects of finite Rossby number 8 and of the presence of a free 

surface on the formation of a Taylor column. The method of solution follows that of 
Charney (1955). The three equations of the set (2.12) may be manipulated to form 
vorticity and energy equations. With T = yR = 0, the steady-state equations plus 
continuity are 

v . v  [T+-+- h€2 6 = 0, 
U 2 f v 2  "1 

( 5 . 1 ~ )  

(5.lb) 

V .  (vD) = 0, ( 5 . 1 ~ )  

where 5 = &/ax - au/ay is the relative vorticity. Introduction of a mass flux stream 
function $: 

UD = - a$/ay, VD = + a$/ax, (5.2u, b )  

satisfies (5.1 c) identically. Equations (5.1 a)  and (5.1 b)  then become 

+-+- = o .  
u2+v2 2 A$ 8 "I I J[h- 

Thus, provided there are no closed streamlines, we have 

u2+v2 1 I, 
2 Ae2 8 

+- +- = G($) ,  

where F and G are functions to be determined and 

5 = - a (--) l a $  +- a (--). l a $  
ax D ax ay ~ a y  

(5.3a) 

(5 .3b )  

(5.4a) 

(5.4b) 

(5.5) 

Hereafter we restrict attention to  cases with j? = 0. 
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(C) 

FIGURE 4. Nonlinear inviscid flow subject to  a rigid lid for p = 0,261. (3.1. = 0.4. 
( a )  E = 0.1, MV = 2.07. (b )  E = 0.5, MV = 1.29. ( c )  E = 1.0, MV = 1.20. 

5.1. Effect of finite Rossby number 

In the case of a rigid lid ( A  = O ) ,  D = 1 -pb and the set (5.4) is decoupled. For uniform 
upstream inflow at x = -a, 

U, = 1, V, = 0, D, = I., $, = - y ,  p ,  = -9. (5-6) 

Hence F($)  = F($w) = 1 and G($) = G($m) = $/e+ $+ l/he2. As noted by Charney 
(1955) edG/d$ = F. Thus ( 5 . 4 ~ )  becomes an elliptic equation for $: 
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E 4 1 )  4 2 )  4 3 )  

0.1 1.96 4-78 4.93 
0-5 0-22 0.33 0.33 
1.0 0.10 0.15 0.15 

TABLE 4. Asymmetry function for inviszid flow with finite E and 
h = 0 for ,u = 0.261; C, = 0. 

Johnson ( 1 9 7 8 ~ )  solved (5 .7 )  analytically for a right circular cylinder. Here it is solved 
numerically for the obstacle (2 .13)  by S.O.R. over a 20 x 20 domain with @ = @- on 
the boundaries. The velocity field and pressure pattern may then be obtained from 
(5.2) and (5.4b), respectively. 

Figure 4 displays the resulting solutions with p = 0.261 for e = 0.1, 0.5, 1.0. Com- 
parison for figures 4 (a) and 3 clearly shows that a finite e decreases the asymmetry of 
the flow (see also tables 3 and 4) and increases the strength of the topography required 
to produce a Taylor column. For E = 0.1, a Taylor column (u < 0) forms forp 2 l.lOpu,. 
Note that by the symmetry of the pressure pattern, C ,  = 0. In  contrast with the 
quasi-geostrophic result, the reference pressure line cremes the y axis a t  finite y. I ts  
leftward displacement decreases with increasing E ,  suggesting that its finite value is a 
physical result and not a consequence of the limited domain. 

As E increases, the single high pressure perturbation present in figure 4 (a) splits into 
two cells up- and downstream of the obstacle centre with a central trough (figure 4c). 
[For still larger E ,  this trough intensifies and becomes the dominant flow feature. The 
solution for E = 10 (not shown) is qualitatively similar to the mirror image (i.e. 
reflexion about the x axis) of figure 4 (a).] This behaviour in the pressure field was also 
noted by Buzzi & Tibaldi (1977) who calculated higher-order ageostrophic effects using 
a perturbation expansion in E .  The pressure trough is not associated with a cyclonic 
vortext since the relative vorticity g = -,ub/e. For fixed p, as e+ co, {-+ 0, and 
A( y) + 0 (see table 4). For flow over the obstacle, continuity requires an increase in 
flow speed, and thus, by Bernoulli’s theorem, (5.4b), a pressure drop develops over the 
obstacle for large e .  For small E ,  the flow intensification is accomplished by a left-right 
pressure gradient over the obstacle. 

A remarkable feature of the solutions to (5 .7 )  is that the blocking efficiency is 
independent of e :  B(y) = 0.10, 0-05, 0.02 for y = 1 , 2 , 3 ,  respectively. This result 
implies that B( y) is dependent only on the magnitude and shape of the obstacle. The 
general solution to (5 .7 )  (Johnson 1978a)  can be written as the sum of the solution of 
the homogeneous equation subject to inhomogeneous boundary conditions and of the 
solution of the inhomogeneous equation with homogeneous boundary conditions. Only 
the former solution contributes to B( y). The latter corresponds to a topographically 
bound vortex (e.g. Merkine & Kalnay-Rivas 1977) which is independent of the 
upstream flow conditions. It contributes to the left-right asymmetry of the flow but 
not to the blocking eEciency. 

It is convenient at this point to discuss the effects of a topographic depression, 
,u < 0, rather than an elevation, ,u > 0. Quasi-geostrophic theory indicates that a 

t The presence of cyclonic vorticity in the inertial solution of Buzzi & Tibaldi (1977) presum- 
ably arises because of the inclusion of a finite number of terms in the series representation. 
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depression produces a cyclonic eddy whose magnitude is the same (for equal lp[ )  as the 
anticyclonic response to an elevation. Finite e solutions with p < 0 also displayed 
cyclonic disturbances. Though the topographically induced vorticity, 6 = -pb/e ,  has 
the same magnitude for ,u = kp0,  continuity constraints require larger streamline 
curvature, V2$ - - p b ( l  -,ub)/e, forp = -p0. This effect produces a more asymmetric 
flow?: for B = 0.1 and p = -0.261, A ’ ( y )  = l/(A(y)+ 1)- 1 = 3.02, 8.26, 7-77 for 
y = 1,2 ,3 ,  respectively, and closed streamlines are present in the solution (not shown), 
These results should be compared with table 4. In  addition, a depression causes the 
coefficients of the homogeneous form of (5 .7 )  to be reversed in sign and reduced in 
magnitude so that B( y )  = - 0.09, - 0.04, - 0.02 for y = 1 , 2 , 3 ,  respectively. Negative 
blocking indicates that the zonal mass flux is greater over the obstacle than it is far 
upstream. This intensification arises because of continuity requirements. As noted 
previously, B( y) is independent of e and identical to the non-rotating case. 

5.2.  Effect of free surface 

As noted by Johnson (1978b), quasi-geostrophic theory indicates that the presence of 
a free surface has no effect on steady-state flow. Here the ageostrophic free-surface 
effects are deduced. For uniform inflow at x = - 00, 

u, = 1, v ,  = 0,  p ,  = -y, 

D, = 1 + h ~ p , ,  $w = p ,  + &A~pz. 

The last equation may be solved for p :  

- 1 + (1 + 2hs$rm)+ 
he 21, = 2 

where the positive root is taken to assure that pw -+ Pa as h -f 0. Thus 

Substitution into (5 .4 )  yields 

aInDa$ a h D a $  D 
VZ$= +-- +- - +- [D(l + 2he$)-4- I], 

ax ax ay ay 
e 1 
2 he 

p = - [ l -  (u2+ v”] + - [( 1 + 2he$)4 - I]. 

(5 .8)  

(5 .9 )  

( 5 . 1 0 ~ )  

(5.10 b )  

This set is coupled because D = D(p)  here. A solution is obtained numerically as in 
$ 5 .  I, but free surface effects are included after each approximate solution is found by 
updating the right-hand side of (5.10a) iteratively. The technique is convergent after 
750 iterations. 

Plots of the solutions for ,u = ,uc = 0.261 are similar to those in figure 4 (a) and are not 
displayed. As the inertio-gravity waves of zero frequency are evanescent, no waves are 
present in the lee of the obstacle. The pressure field ie an even function in x so C, = 0. 
Table 5 summarizes the results. The presence of a free surface decreases the blocking 

t Redefinition of the asymmetry function for p < 0 facilitates direct comparison with results 
for /L > 0. 
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h B(1) B(2) B(3) 4 1 )  4 2 )  4 3 )  
10-2 0.10 0.04 0.02 1-95 4.75 4.89 
10-1 0.08 0.03 0.01 1.90 4.48 4.58 

TABLE 5. Blocking and asymmetry functions for inviscid flow with finite A 
for E = 10-1 and p = 0.261; C, = 0. 

FIGURE 5. Numerical solutions as a function of E for YR = 2.0 x h = l O - l ,  and p = 0.522. 
(2.1. = 0.4. (a) E = MV = 1.51. (b) 6 = MV = 1.52. ( c )  E = MV = 1.53. 
(d) E = l O - l ,  MV = 1.65. 

action of the obstacle and reduces the flow asymmetry. The anticyclonic vortex 
generated by the orographic vortex compression (p > 0) has associated with it a 
positive free surface deflexion. This elevation of the free surface partially negates the 
squashing of vortex tubes by the orography. Thus the magnitude of the topographic 
vortex generated by the last term in ( 5 . 1 0 ~ )  is reduced and consequently so too is the 
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E B(1) B(2) B(3) 4 1 )  4 2 )  A(3) 6, eT 
10-4 1.06 0.77 0.37 - 0.00 0.01 0.00 0.74 0.57 
10-3 1.06 0.77 0.37 - 0.01 0.06 0.02 0.74 0.57 
10-2 1.06 0.76 0.36 - 0.10 0.84 0.19 0.74 0.57 
10-1 0.90 0.56 0.28 - 3.87 24.72 2.06 0.78 0.65 

TABLE 6. Blocking and asymmetry functions and drag coefficients as a function of 
e for ~ 1 %  = 2.0 x A = 10-l and y = 0.522. 

flow asymmetry. Furthermore the positive free-surface deflexion diminishes the 
continuity effects represented by the first two terms on the right-hand side of ( 5 . 1 0 ~ ) .  
Thus the blocking of the flow is reduced. In  the limit as E + O  with AE - 0(1), 

(A(Y) ,B(Y)) - - tO,  

and the flow is unaffected by the obstacle except for a free surface deflexion 

P = pm+pbIhe 
which assures mass continuity. 

It should be noted that these results hold for rotating flow where E < 1. As figure 4 (c) 
indicates, negative free surface deflexion is present over elevations for E 2 1 .  In such 
cases the free surface provides a positive feedback. 

6. Results of numerical integrations of initial boundary value problem 
The first series of experiments is designed to display the effect of variations in the 

Rossby number e (e.g. variation in the strength of the inflow). In  each experiment, 
yR = 2.0 x 10-2, A = 10-1, p = 0.522, /? = 0, and the zonal flow a t  x = - co is u,( y )  = 1. 
The computed fields as a function of e are displayed in figure 5 and the relevant flow 
quantities in table 6 .  For e = the solution agrees with the linear analysis of $ 3  
(see figure 2 and table 2). For increasing e,  the blocking efficiency decreases, the asym- 
metry increases, and the total drag increases. Note that the strongly inertial solution of 
figure 5 ( d )  (e/yR = 5 )  is strikingly different from the inviscid (e /yR = 00) result of 
figure 4(a).  (As the height of the obstacle is different in the two figures, only quali- 
tative comparison may be made.) The former possesses large upstream-downstream 
asymmetry which is lacking in the latter. Owing to the presence of friction, the region 
of stagnant fluid is rotated - 90" in a clockwise direction relative to its inviscid location 
directly to the right of centre. 

The effects of changes in the strength of the friction coefficient yR are shown in 
figure 6 and table 7. In each experiment E = lO-l, h = 10-l) ,8 = 0, p = 0.522, and 
u,( y) = 1. For increasing yR,  the blocking efficiency of the obstacle, the flow asym- 
metry, and the total drag decrease except for yR = whose blocking efficiency is 
less than that for y R  = 2.0 x This suggests that a threshold in B ( y )  has been 
superseded. A further decrease in yR would then produce a further reduction in blocking 
efficiency until the inviscid results of table 5 would be attained with the concomitant 
small B(y). The counter-clockwise shift of the centre of the anticyclonic cell from 
figure 6 ( b )  to 6 (a)  also suggests this trend toward the inviscid results with the stagnant 
region located directly to the right of the obstacle's centre. 
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- - ---- ---->---- - - 
(C) ( d )  

FIGURE 6. Numerical solution as a function of YR for E = l O - l ,  h = l O - l ,  and p = 0.522. 
C.I. = 0-4. (a) YR = 1.0 x lo-', MV = 1.81. ( b )  YR = 2.0 x lo-', MV = 1.65. (c) YR = 1.0 x lo-', 
MV = 1.40. ( d )  Y R  = 2 . 0 ~  lo-', MV = 1.32. 

Y R  B(1) B(2)  B(3)  4 1 )  4 2 )  4 3 )  6 E  ep 
0.01 0.85 0.53 0.28 -6.57 -60.19 4.00 0.77 0.96 
0.02 0.90 0.56 0.28 -3.87 24.72 2-06 0.78 0.65 
0.10 0.78 0.38 0.18 3.92 0.58 0.32 0.90 0.26 
0-20 0.55 0.25 0.12 0.19 0.13 0.11 0.96 0.13 

TABLE 7. Blocking and asymmetry functions and drag coefficients as a function of 
YR for E = l O - l ,  h = l O - l ,  and p = 0.522. 
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" I  

FI~URE 7. Numerical solutions with various obstacles for E = 

-2p,, MV = 1-72. (e) ,u = 2pc (prolate), MV = 1-90. (f) p = Zp, (oblate), MV = 1.33. 

YR = 2.0 x h = 10-l, 
c.1. = 0.4. (a) p = 2pc, MV = 1.65. ( b )  p = pc ,  MV = 1.56. (c) p = &pc, MV = 1.33. ( d )  p = 
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P B(1) 3(2)  B(3) A(1 )  4 2 )  4 3 )  8.E & 
0.90 0.56 0.28 -3.87 24.72 2.06 0.78 0.65 
0.43 0.26 0.15 2.60 2.80 1.74 0.88 0.45 
0.13 0.07 0.04 0.47 0.65 0.58 0.97 0.14 

- 2/10 0.71 0.41 0.24 -5.989 -13.349 7.629 0.77 0,75 
0.85 0.67 0.47 - 10.56 -29.81 10.54 0.66 0.29 
0.74 0.33 0.16 -10.30 1.39 0.65 0.87 0.98 

2PC 
PO 

*PC 

2Pc t 
2Pcl 

t Prolate obstacle (see figure 8e). 
$ Oblate obstacle (see figure Sf). 
9 A'(y) = l / ( A ( y ) + l ) - 1  (see footnote in 85.1). 

TABLE 8. Blocking and asymmetry functions and drag coefficients as a function of 
y for E = 10-1, YR = 2.0 x 10-2, and A = lo-'. 

The solution for yR = 2.0 x 10-1 is quite close to the linear result (see table 2) 
despite the fact that the inertial terms are not inconsequential (e/yR = 0.5). The 
solutions for yR - E are in qualitative agreement with those of Vaziri & Boyer (1971). 
The major difference is that the latter do not include a non-divergent irrotational 
circulation of the type discussed by Huppert & Stern (1 974) which causes the net shift 
of the streamlines to be zero. 

The next series of experiments ascertains the effects of variations in the magnitude 
and shape of the topographic feature. For the parameter settings E = 1 0-l, yR = 2 x 
A = l O - l ,  ,!? = 0, and u,(y) = 1, the results are summarized in figure 7 and table 8. 
As expected, reduction in the height of the obstacle from 2pc to &pc results in decreased 
blocking, asymmetry, and total drag. The solution for p = pc should be compared 
with the inviscid results of figure 4(a)  and tables 4 and 5.  The former possesses a 
significantly greater blocking efficiency and a smaller left-right asymmetry. The 
centre of the region of stagnant fluid has been rotated - 45" in a clockwise direction 
from its location in figure 4 (a )  because of the presence of bottom friction. As men- 
tioned, figure 7 ( c )  agrees well with quasi-geostrophic theory. In  contrast figure 7 (a)  
displays a strongly ageostrophic solution (p N 515). 

In  agreement with the discussion of $5.1, a topographic depression (figure 7 4  
generates a cyclonic flow response. Finite 15 results indicate that a stronger response is 
generated forp = - 0.522 thanp = 0.522. In  addition frictional effects are diminished 
for p < 0 and enhanced for p > 0 [see (2.12)]. The combined effect of inertial and 
frictional terms is to produce a more inertial result with the associated larger asym- 
metry (table 8). Indeed figure 7 ( d )  compares more favourably with the mirror image 
of figure 6(a)  where yR is halved than with figure 7(a) .  The reduction in blocking 
efficiency for the depression case is also consistent with a decrease in viscous effect 
though the absence of a negative blocking is a t  variance with the inviscid resultsof $ 5.1. 

Non-circularly symmetric obstacles are studied in figures 7 ( e )  and (f) and table 8. 
For a prolate {oblate) feature, a; = Q(2) and gv = 2(Q) in (2.13), and the volume of the 
obstacle is the same as for crz = rv = 1. An obstacle aligned normal to the inflow 
causes greater blocking and a more asymmetric response though the drag exerted on 
the flow is reduced due to its narrower zonal extent [see (3.6b)l. 

The effect of a change in the rotational Froude number h (e.g. a change in g )  is 
documented in table 9. In  agreement with the analysis of $5.2 (table 5 ) ,  the presence 
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h B(1)  B(2) B(3) A(1) A(2) A(3)  6 E  8 p  
lo-' 0.902 0.563 0.288 -3.81 23.59 2.00 0.78 0.64 
lo-' 0.897 0.556 0.281 -3.87 24.72 2.06 0.78 0.65 

TABLE 9. Blocking and asymmetry functions and drag coefficients as a function of 
A for E = lo-', YR = 2.0 x and p = 0.522. 

B(1)  B(2) a 3 1  A(1)  4 2 )  4 3 )  6 E  (?T 

s =  ++ 0.88 0.54 0.27 -3.69 -20.22 2.53 0.80 0.53 
s =  - 4  0.89 0.54 0.28 -4.48 10.69 2.40 0.78 0.75 
y c =  + 1  0.98 0.67 0.41 -1.43 -1.86 -3.34 0.66 0.89 
Yc = 0 1.00 0.78 0.59 - 1.84 -4.97 -202.25 0.58 1.03 
y e =  - 1  1.04 0.82 0.43 0.61 10.39 1.27 0.66 0.84 

TABLE 10. Blocking and asymmetry functions and drag coefficients for various u,(y) 
for E = lo-', y~ = 2.0 x A = l O - l ,  and p = 0.522. 

of a free surface causes reduced blocking. In  contrast the viscous results show increased 
flow asymmetry for increased A. The reason for the increased drag lies in the greater 
deflexion of the free surface for larger A. 

Another set of experiments investigated the effect of variations in the horizontal 
structure of the zonal inflow. Results for inflow of the form 

uJy) = l . O + S  - tan-ly, (3 
are given in table 10. The fields are qualitatively similar to those in figure 5 (d )  and are 
not shown. With anticyclonic shear (8 = + +), the dominant flow is to the left of the 
obstacle. In  contrast the cyclonic shear (S  = - +) exhibits strong flow both to the left 
and to the right. When suitably non-dimensionalized (table lo), the asymmetry of 
the anticyclonic case is slightly greater. More surprisingly, the blocking efficiencies are 
virtually identical with each other and with the unsheared case (table 6). These results 
were confirmed by an inviscid, rigid-lid analysis similar to 5 5 . 1 ,  but for flow with 
linear shear. 

Results for jet-like inflows given by 

um(y )  = 0 . 1  +0.9sech2(y-yc), 

are displayed in figure 8 and table 10. Here yc denotes the location of the peak speed far 
upstream. For the jet centre to the left of the obstacle (figure 8 ( a ) ) ,  the dominant flow 
is to the left of the obstacle at x = 0 with weak return (u < 0 )  flow to the right. For 
yc = 0 or yc = - 1 ,  the flow is split by the obstacle. These results are similar to those of 
Nakamura ( 1  978) using spherical geometry. As indicated in table 10, the blocking 
efficiency decreases for increasing yc. 

A final series of experiments (see table 1 1 )  incorporated the beta effect in the 
presence of a uniform inflow u,( y)  = 1 .  For /? = + 1 (eastward flow), the solution (not 
shown) exhibits the well-known (e.g. Janowitz 1974; McCartney 1975) semicircular 
Rossby lee waves with wavelength N 2n. In  agreement with Stevenson & Janowitz 
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FIGURE 8. Numerical solutions for inflow with jet profiles for rz = 10-1, YR = 2.0 x 10V, h = 10-1, 

and y = 0.522. C.I.  = 0.2. (a)  yc = + 1, MV = 1.00. ( b )  yo = 0, MV = 0.83. (c) yo = - 1, 
MV = 0.96. 

~ ~~ 

B(1) B(2) B(3) 4 1 )  4 2 )  4 3 )  C E  CT 
1.27 +1 0-95 0-40 0-06 -2.79 1.04 0-38 1.00 

c 0.90 0.56 0-28 -3.87 24.72 2.06 0.78 0.65 
- 1  0.37 0.13 0.04 3.78 3.51 2.00 1.03 0.40 

TABLE 11. Blgcking and asymmetry functions and drag coefficients as a function of 
p for IZ = l O - l ,  YR = 2.0 x 10-2, h = lO-I, and p = 0.522. 

p^ 
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(1977), the waves decay downstream in a distance 0(2e/y , ) .  For /? = - 1 (westward 
flow), no lee waves are present, and the fields are similar to the ,8 = 0 case (figure 5 4  
and are not displayed. The presence of positive (negative) Brotates the stagnant region 
(counter) clockwise relative to the/? = 0 case. This effect resultsin increased (decreased) 
topographic drag. Table 11 also shows that the solution for B = f 1 has a stronger, 
though smaller, region of blocking compared to B = 0 while the /? = - 1 case is both 
weaker and smaller. 

7. Conclusions 
The flow of a rotating barotropic fluid over a finite isolated Gaussian obstacle has 

been studied. Emphasis has been pIaced on determining the blocking efficiency of the 
obstacle in various flow situations. Quasi-geostrophic theory ($4) indicates no blocking 
of the flow by the obstacle (i.e. just as much goes over as is incident on the obstacle). 
This deficiency arises because quasi-geostrophic theory restricts attention to non- 
divergent flow. 

In  this study the shallow water equations with a linear Rayleigh friction were used to 
determine the blocking. The approach is valid in the limit (yil epP, ypP)  + 0. Linear 
viscous results (8 3) indicate 100 yo blocking efficiency when ,u 9 yR( - y4). In  contrast 
inviscid inertial theory ( 5  5 )  indicates a blocking efficiency of N 10 yo which is inde- 
pendent of the Rossby number e. It was shown that the presence of a free surface 
decreases the blocking for inertia1 flow when E < 1 but has no effect on linear viscous or 
quasi-geostrophic flow. 

Numerical solutions of the full model equations ($6)  confirm and extend these 
conclusions. In  particular, the inclusion of weak friction in inertial flow increases 
the blocking efficiency which is a maximum for small but finite values of dissipation. 
The presence of horizontal shear in the upstream inflow does not significantly 
change the blocking efficiency of the obstacle. Jet-like inflows whose peaks speed is 
on-line with or to the right of the obstacle centre are split by the obstacle and 
are more strongly blocked than jets to  the left of centre. Lastly, on the beta plane, 
the blocking is greater for eastward rather than westward flow. 

The author thanks Dr Akira Kasahara for fruitful discussions during the course of 
this investigation. John C. Adams kindly provided the FORTRAN code used to solve the 
finite-difference version of the elliptic equation of $ 3  by direct matrix inversion. 
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